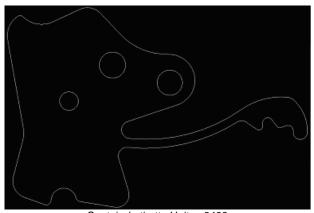


Report No: 121-13 Sample No: 2.2.1045

CONFIDENTIAL

REPORT: Durnico functional watch part cutting by Laser-MicroJet®

for Anonymous


by Mr Stephane Delahaye; Synova SA

TASK

The Laser-MicroJet $^{\otimes}$ technology has been tested for cutting of 1 functional part of watch: "un sautoir de tirette Unitas 6498" (see drawing below).

SAMPLE DESCRIPTION AND PREPARATION

SAMPLE	Material	Durnico stripes
	Dimension	~10 cm
	Thickness	410 μm
	Quantity	10 pcs

Sautoir de tirette Unitas 6498

Release of application report				
Project Leader			Responsible Application Group	
Name:	Stéphane Delahaye	Name:	D ^r Benjamin Carron	
Date:	06.02.2012	Date:	06.02.2012	
Visum:		Visum:		
E004 (440004	Page 4/4	·		

F001 (140904,mw) Page 1/4

Formatted: French (Switzerland)

Field Code Changed

Formatted: French (Switzerland)

Field Code Changed

Formatted: French (Switzerland)

Report No: 121-13 Sample No: 2.2.1045

CONFIDENTIAL

LCS 300

PROCESS: INSTRUMENT & TEST PARAMETERS

For these experiments, the LCS 300 equipped with a frequency-double Q-swithed Nd:YAG laser has been used as the machine configuration in our lab.

Major advantages of Laser-MicroJet® technology with regards to your application are:

- Cutting of arbitrary shapes
- Negligible heat damage to the material
- Negligible slag/burr formation
- Limited chipping
- Very good wall surface quality

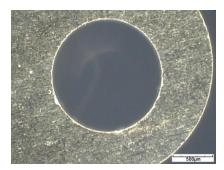
In the table below, the optimized processing parameters used in the experiments are summarized:

Machine type

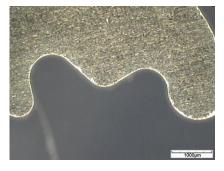
MICROJET [®] PARAMETER	Nozzle diameter MicroJet® diameter	30 μm 25 μm
	Water pressure	450 <i>bar</i>
	Assist gas	He
LASER PARAMETER	Laser type	L101G
	Wavelength	532 nm
	Pulse frequency	10 <i>kHz</i>
	Average power	~19.5 <i>W</i>
CUTTING PARAMETER	Cutting speed	0.7 <i>mm</i> /s

₹	Cutting speed	0.7 <i>mm/</i> s
	Number of passes	1
	Process time	2.3 min
	handling	Clamps

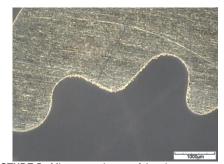
Report No: 121-13 Sample No: 2.2.1045


CONFIDENTIAL

RESULTS


The following microscope picture give an overview on the quality obtained with the Laser-Microjet $^{\otimes}$ technology.

PICTURE 1: General view of the piece


PICTURE 2: Microscope image of the piece (dark field illumination; front side)

PICTURE 3: Microscope image of the piece (dark field illumination; front side)

PICTURE 4: Microscope image of the piece (dark field illumination; back side)

PICTURE 5: Microscope image of the piece (dark field illumination; back side)

Report No: 121-13 Sample No: 2.2.1045

CONFIDENTIAL

	What are your priorities? (please put a cross)	Quantified expectations or improvements
Burr-free:	X	No burrs observed
Heat-damage free:	X	No heat-damage observed
Chipping/Cracks:	X	Limited
Edge Roughness:	X	Good

The cutting quality for Durnico is good on both sides.

CONCLUSION

The cutting of Durnico samples was investigated on SYNOVA LCS 300. This machine is based on the MicroJet® technology and combines the advantages of the high energy pulsed laser with a hair-thin water jet. While the laser is used for material ablation, the water jet is used for guiding the laser light, cooling the edges and preventing the sample from particle contamination, advantages that are essential for cutting Durnico with high quality.

These tests show that:

- It is possible to cut Durnico with various and complex shape.
- There is a good repeatability of the process for this material.
- The quality is good on both sides.

We thank you for your interest in our technology and we hope our results meet your requirements. Our sales representative Pierre Court will contact you soon to obtain a feedback about the analysis of these results and to discuss with you the further steps.