

Report No: 121-5 Sample No: 2.2.1056

CONFIDENTIAL

REPORT: Wafer dicing by Laser-MicroJet®

for Anonymous

by Mr Stéphane Delahaye; Synova SA

TASK

The Laser-MicroJet[®] technology has been tested for the dicing of Silicon wafers with mold compound on the top side and metals layer on the back side. The main goal was to demonstrate the feasibility of cutting such materials with a good surface quality and high cutting speed.

SAMPLE DESCRIPTION AND PREPARATION

SAMPLE	Material	100μm mold compound + 100μm
		Silicon + 3µm TiNiAg
	Dimension	8 Inch
	Thickness	~200 μm
	Quantity	2 wafer pcs

2 wafers were available for cutting tests. The first one was used for parameter trials and the other was split in 4 parts for the final cutting tests. As the second wafer doesn't show any streets it makes difficult the alignment of the cut.

The silicon wafers were mounted on semiconductor standard dicing frames with UV-curable tape.

Release of application report					
	Project Leader		Responsible Application Group		
Name:	Stéphane Delahaye	Name:	D ^r Benjamin Carron		
Date:	20/01/2012	Date:	20/01/2012		
Visum:		Visum:			
		<u>.</u>			

Report No: 121-5

Sample No: 2.2.1056

CONFIDENTIAL

UV Tape:

ADWILLD-628

PROCESS: INSTRUMENT & TEST PARAMETERS

For these experiments, the LDS 200M equipped with a single cavity Nd:YAG laser has been used as the machine configuration in our lab.

It is a manually loaded clean-room compatible machine, allowing to cut, drill, groove, scribe, trench, mark, or grind wafers of any kind of semiconductor material.

Major advantages of Laser-MicroJet® technology with regards to your application are:

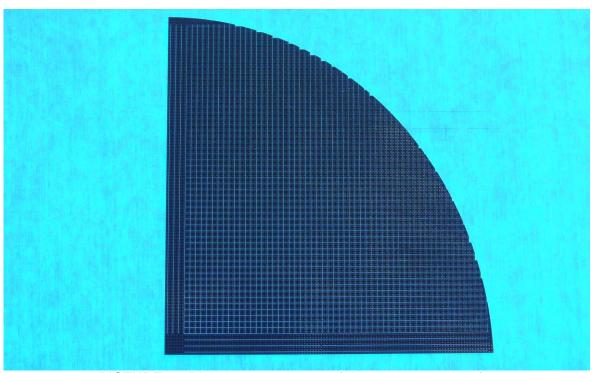
- Minimal chipping on the frontside
- No heat damage to the material
- No slag/burr formation
- Negligible contamination / re-deposition
- Advantageous process rates

In the table below, the optimized processing parameters used in the experiments are summarized:

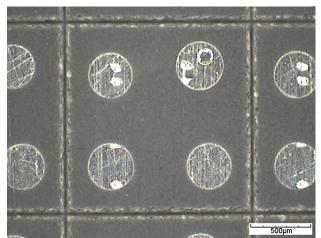
SYSTEM	Machine type	LDS 200M

	MICROJET [®]	Nozzle diameter	30 μm
	PARAMETER	MicroJet® diameter	~27 µm
		Water pressure	450 <i>Bar</i>
		Assist gas	He
	LASER PARAMETER	Laser type	L51G
		Wavelength	532 Nm
		Pulse frequency	20 <i>kHz</i>
		Average power	~10.6 <i>W</i>
并生产者 ()			
35,	CUTTING PARAMETER	Cutting speed	300 <i>mm/</i> s
		Number of passes	Horizontal lines: 18
			Vertical lines: 20
		Overall speed	15-17 <i>mm/</i> s

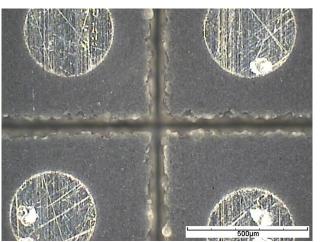
Tape


Report No: 121-5

Sample No: 2.2.1056

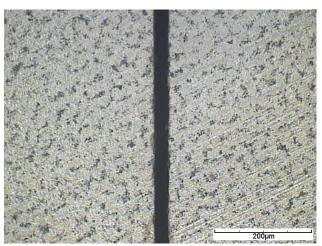

CONFIDENTIAL

RESULTS


The following microscope picture give an overview on the quality obtained with the Laser-Microjet® technology.

PICTURE 1: Digital camera image of the 1/4 processed wafer

PICTURE 2: Microscope image of one chip (dark field illumination; front side view)



PICTURE 3: Microscope image of the cuts (dark field illumination; front side view). The edges are good and no heat affected zone is visible.

Report No: 121-5 Sample No: 2.2.1056

CONFIDENTIAL

PICTURE 4: Microscope image of the cut (dark field illumination; back side view). No chipping is visible on the back side

PICTURE 5: Microscope image of the cut (dark field illumination; side view). The cut through the mold is regular with a straight sidewall

The table below summarizes the results.

	What are your priorities? (please put a cross)	Quantified expectations or improvements
Speed / throughput:	50 mm/s	15-17mm/s. Maybe improved with a more powerful laser, but the quality will suffer
Kerf-width:	X	~30µm on the Silicon, ~100µm on the mold compound
Burr-free:	X	No burrs observed
Contamination/Particles:	X	No contamination or particles
Heat-damage free:	X	No heat affected zone
Chipping/Cracks:	X	Minimal chipping on the frontside
Edge Roughness:	X	Good
Fracture strength:	X	Can't be measured in our lab

Report No: 121-5

Sample No: 2.2.1056

CONFIDENTIAL

CONCLUSION

The dicing of silicon wafers with mold compound on the top was investigated on SYNOVA LDS 200M. This machine is based on the MicroJet[®] technology and combines the advantages of the high energy pulsed laser with a hair-thin water jet. While the laser is used for material ablation, the water jet is used for guiding the laser light, cooling the edges and preventing the sample from particle contamination, advantages that are essential for dicing of silicon wafers with high quality.

These tests show that:

- The quality of the cut is good. Some chipping is visible on the front side due to the grain observed into the mold (see picture 3).
- Speed of the cut is 15-17mm/s. This speed could certainly be increased but the quality will suffer from it.

We thank you for your interest in our technology and we hope our results meet your requirements. Our sales agency will contact you soon to obtain a feedback about the analysis of these results and to discuss with you the further steps.