

Report No: 122-8 Sample No: 2.2.1068

CONFIDENTIAL

REPORT:

Wafer Downsizing by Laser-MicroJet®

for Anonymous

by Samuel Obi, Synova SA

TASK

The Laser-MicroJet[®] technology has been tested for cutting 720µm thick silicon wafers into smaller discs. Two types of wafers were available; both types had been glued on alumina carrier plates by the customer. See Figure 1 below:



FIGURE 1: Both types of wafers after cutting out the smaller discs.

Release of application report					
	Project Leader		Responsible Application Group		
Name:	Samuel Obi	Name:	Benjamin Carron		
Date:	22.02.2012	Date:	22.02.2012		
Visum:		Visum:			
		<u>.</u>			

Report No: 122-8 Sample No: 2.2.1068

CONFIDENTIAL

SAMPLE DESCRIPTION AND PREPARATION

SAMPLE 1	Material	Patterned silicon wafers
	Carrier	Alumina plate
	Dimension	Ø200 <i>mm</i>
	Thickness	720 µm
	Number of discs to cut out	12
	Disc size	Ø23.8 <i>mm</i>
	Quantity of wafers	3 pcs
	-	
SAMPLE 2	Material	Patterned silicon wafers
	Carrier	Alumina plate
	Dimension	Ø200 <i>mm</i>
	Thickness	720 μm
	Number of discs to cut out	7
	Disc size	Ø29.8 <i>mm</i>
	Quantity of wafers	2 pcs

PROCESS: INSTRUMENT & TEST PARAMETERS

For these experiments, the LCS 300 RZW equipped with a frequency-doubled Q-switched Nd:YAG laser has been selected as the most suitable machine configuration.

This machine is based on the Laser-MicroJet® technology and combines the advantages of the high energy pulsed laser with a hair-thin water jet. While the laser is used for material ablation, the water jet is used for guiding the laser light, cooling the edges and preventing the sample from particle contamination, advantages that are essential for machining of silicon with high quality.

It is a manually loaded clean-room compatible machine, allowing to cut, drill, groove, scribe, trench, mark, or grind wafers of any kind of semiconductor material. Please note that Synova is also supplying customized fully automated machines capable of handling bare wafers in cassette-to-cassette operation.

Major advantages of Laser-MicroJet® technology with regards to your application are:

- Advantageous process rates
- Excellent fracture strength
- Cutting of arbitrary shapes
- No chipping
- Negligible heat damage to the material
- No slag or burr formation
- No contamination or re-deposition

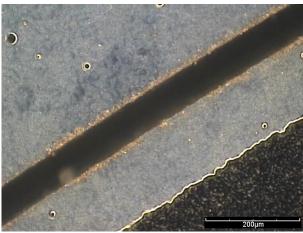
Report No: 122-8 Sample No: 2.2.1068

CONFIDENTIAL

In the table below, the processing parameters used in the experiments are summarized:

SYSTEM Machine type LDS 200 M

	MICROJET®	Nozzle diameter	50	μm
	PARAMETER	MicroJet® diameter	45	μm
		Water pressure	300	bar
		Assist gas	He	
	LASER PARAMETER	Laser type	L101G	
7		Wavelength	532	nm
		Pulse frequency	20	kHz
		Average power	25	W
4%	CUTTING PARAMETER - SAMPLE 1	Cutting speed	120	mm/s
		Number of passes	30	
		Process time per disc ¹	20	sec
		Process time per wafer ¹	280	sec
16	CUTTING PARAMETER - SAMPLE 2	Cutting speed	120	mm/s
		Number of passes	30	
		Process time per disc ¹	25	sec
		Process time per wafer ¹	175	sec


¹ Pure cutting time, not counting loading, unloading and alignment

RESULTS

The following microscope pictures give an overview on the quality obtained with the Laser-MicroJet $^{\otimes}$ technology:

FIGURE 2: Microscope image of the cut (bright field imaging). The edge of the disc is sharp and clean.

FIGURE 3: High resolution microscope image of the cut (bright field imaging).

Report No: 122-8 Sample No: 2.2.1068

CONFIDENTIAL

CONCLUSION

Downsizing of diameter 100mm silicon wafers into smaller discs was investigated with the Laser-MicroJet® technology (LMJ) on the Synova LDS200M. The LMJ is ideally suited for such an application, because the ablation rates in silicon are very high, while the mechanical impact of the process is negligible. The continuously running waterjet also keeps particles from sticking to the wafer.

Our results are summarized in the table below: we achieved excellent quality standards without chipping or heat damage with very high throughput rates.

	Customer priorities	Synova results and comments
Speed / throughput:	X	20 sec for Ø23.8mm disc 25 sec for Ø29.8mm disc
Kerf-width:	X	Around 60µm
Burr-free:	X	No burrs
Depth control:	X	Cut stops at alumina plate
 Contamination/Particles: 	X	No contamination
Heat-damage free:	X	No heat damage
Chipping/Cracks:	X	No chipping
Edge Roughness:		Excellent edge quality
Tolerances:	X	High tolerances
Fracture strength:	X	Very high fracture strength

We thank you for your interest in our technology and we hope our results meet your requirements. Our sales team will contact you soon to obtain a feedback about the analysis of these results and to discuss with you the further steps.