

Report No: 123-6 Sample No: 2.2.1067

CONFIDENTIAL

REPORT: PcBN cutting by Laser-MicroJet®

for Anonymous

by Ronan Martin; Synova SA


TASK

The Laser-MicroJet® technology has been tested for cutting of PcBN. 10 trapezoidal bits were cut in a 2mm-thick wafer, while 3 cylinders and 4 squares were cut in a 4.76mm-thick wafer.

SAMPLE DESCRIPTION AND PREPARATION

THICK SAMPLES	Material	PcBN
	Dimension	Ø 47 <i>mm</i>
	Thickness	4.76 <i>mm</i>
	·	
THIN SAMPLES	Material	PcBN
	Dimension	Ø 28 <i>mm</i>
	Thickness	2 <i>mm</i>

The picture below shows a comparison of the sizes of the as-received wafers:

Release of application report			
	Project Leader		Responsible Application Group
Name:	Ronan Martin	Name:	D ^r Benjamin Carron
Date:	16.03.2012	Date:	16.03.2012
Visum:	ROM	Visum:	BC
		·	

Report No: 123-6 Sample No: 2.2.1067

CONFIDENTIAL

PROCESS: INSTRUMENT & TEST PARAMETERS

For these experiments, the LCS300 equipped with a dual cavity Nd:YAG laser has been used as the machine configuration in our lab.

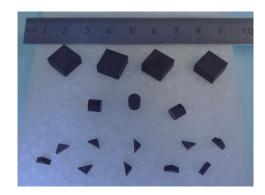
It is a manually loaded machine, allowing to cut, drill, groove, scribe, trench, mark, or grind wafers of any kind of semiconductor material.

Major advantages of Laser-MicroJet® technology with regards to your application are:

- Advantageous process rates
- Cutting of arbitrary shapes
- Parallel cut
- Excellent wall surface quality
- Negligible contamination / re-deposition

In the table below, the optimized processing parameters used in the experiments are summarized:

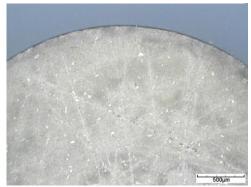
	SYSTEM	Machine type	LCS300	
V - 000				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MICROJET [®]	Nozzle diameter	80 µm	
	PARAMETER	MicroJet® diameter	72 µm	
		Water pressure	300 <i>bar</i>	
		Assist gas	He	
	LASER PARAMETER	Laser type	L202G	
		Wavelength	532 <i>nm</i>	
		Pulse frequency	14 <i>kHz</i>	
		Average power	140 <i>W</i>	
并在特别 ()				
- 15	CUTTING PARAMETER	Motion speed	40 <i>mm/</i> s	;
	Cylinders	Number of passes	200	
		Overall speed	12 <i>mm/n</i>	nin
16	CUTTING PARAMETER	Motion speed	40 <i>mm/</i> s	
	Squares	Number of passes	160	
		Overall speed	15 <i>mm/n</i>	nin
46	CUTTING PARAMETER	Motion speed	40 / 20 <i>mm</i> /s	;
	Bits	Number of passes	90 / 60	
		Overall speed	23 <i>mm/n</i>	nin



Report No: 123-6 Sample No: 2.2.1067

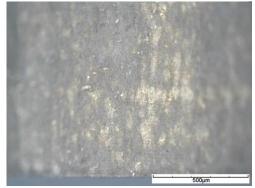
CONFIDENTIAL

RESULTS


The pictures below shows all the processed parts:

• Cylinder cutting – 4.7mm thick

The cylinders processed in the lab have a diameter of 5.81mm.


The following microscope picture give an overview on the quality obtained with the Laser-Microjet $^{\$}$ technology.

PICTURE: Microscope image of front side edge (dark field illumination; top view)

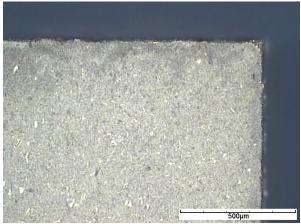
PICTURE: Microscope image of the back side edge (dark field illumination; bottom view)

PICTURE: Microscope image of the wall (dark field illumination; side view)

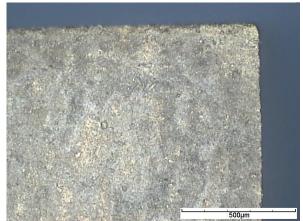
Overall quality is very good: edges are clean and sharp without noticeable chipping.


Report No: 123-6 Sample No: 2.2.1067

CONFIDENTIAL


Square cutting – 4.7mm thick

The squares processed in the lab have a side of 9.77mm.

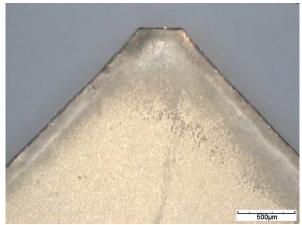

The following microscope pictures give an overview on the quality obtained with the Laser-Microjet® technology.

PICTURE: Microscope image of front side edge (dark field illumination; top view)

PICTURE: Microscope image of the back side edge (dark field illumination; bottom view)

PICTURE: Microscope image of the wall (dark field illumination; side view)

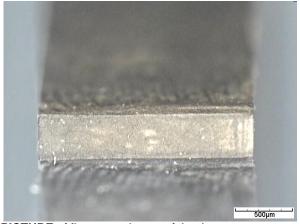
Overall quality is again very good, with sharp edges and very limited chipping.


Report No: 123-6 Sample No: 2.2.1067

CONFIDENTIAL

• Bit cutting –2mm thick

The bits processed in the lab have a length of 5.68mm, a height of 2.65mm and 45° angles.


The following microscope picture give an overview on the quality obtained with the Laser-Microjet® technology.

PICTURE: Microscope image of front side edge (dark field illumination; top view)

PICTURE: Microscope image of the back side edge (dark field illumination; bottom view)

PICTURE: Microscope image of the tip (dark field illumination; tip view)

Like previously, overall quality is very good, with sharp edges and negligible chipping.

Report No: 123-6

Sample No: 2.2.1067

CONFIDENTIAL

The table below presents a comparison between your expectations and the actual results.

		What are your priorities? (please put a cross)	Quantified expectations or improvements
•	Speed / throughput:	18 – 30 mm/min	12 – 23 mm/min

CONCLUSION

The cutting of PCBN wafers into triangle- and circular- and square-shapes with chamfer was investigated on a SYNOVA LCS300. This machine is based on the Laser-MicroJet® technology and combines the advantages a high-energy pulsed double laser with a hair-thin water jet. While the laser is used for material ablation, the water jet is used for guiding the laser light, cooling the edges and preventing the sample from particle contamination.

Quality

The quality is very good for all the samples of the wafer cutting. Edges are sharp and chipping is very limited.

Speed

Speeds are typical of our technology performance in comparable materials. Below you can find a summarizing table for the cutting speeds:

Material	Speed (mm/min)
4.7 mm PCBN – Cylinders	~ 12
4.7 mm PCBN – Squares	~ 15
2.0 mm PCBN – Bits	~ 23

We thank you for your interest in our technology and we hope our results meet your requirements. Our sales director will contact you soon to obtain a feedback about the analysis of these results and to discuss with you the further steps.