

Report No: 123-7
Sample No: <<box>>

CONFIDENTIAL

REPORT: Thin Mo cutting by Laser-MicroJet®

For Anonymous

By Masaki Takano, Synova Japan

TASK

The Laser-MicroJet® technology has been tested for Thin Mo cut.

Cutting Pattern

SAMPLE DESCRIPTION AND PREPARATION

SAMPLE 1	Material	Mo
	Dimension	100x50 <i>mm</i>
	Thickness	50 μm
	Quantity	1 pcs

Release of application report					
Project Leader			Responsible Application Group		
Name:	Masaki Takano	Name:	D ^r Benjamin Carron		
Date:	2012.03.07	Date:	2012.03.14		
Visum:		Visum:			

Report No: 123-7
Sample No: <<box>>

CONFIDENTIAL


PROCESS: INSTRUMENT & TEST PARAMETERS

For these experiments, the LDS300M equipped with a green laser has been used as the machine configuration in our lab.

In the table below, the optimized processing parameters used in the experiments are summarized:

1	SYSTEM	Machine type	LDS300M	
000.507				
	MICROJET [®] PARAMETER	Nozzle diameter	40	μm
		MicroJet® diameter	33.2	μm
		Water pressure	400	bar
		Assist gas	He	
	LASER PARAMETER	Laser type	L101G	
		Wavelength	532	nm
		Pulse frequency	8	kHz
		Average power	8.2	W
of a residual				
16	CUTTING PARAMETER	Cutting speed	0.5	mm/s
		Number of passes	1	
		Fixture	See below	

Fixture #1 without sample 1mm thick ness steal with some holes

#2 with sample We taped the sample and cut on the holes.

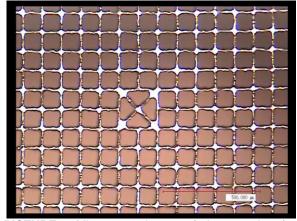
Report No: 123-7

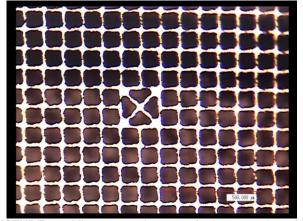
Sample No: <<box>>

CONFIDENTIAL

RESULTS

Before cutting




PICTURE: Digital camera image of the sample before processing (top view)

PICTURE: Digital camera image of the sample after processing (top view)

PICTURE: Microscope image of the sample after processing (bright field illumination; top view)

PICTURE: Microscope image of the sample after processing (bright field illumination; back view)

We cleaned the sample with ultrasonic bath for 5min.

Report No: 123-7

Sample No: <<box>>

CONFIDENTIAL

The table below summarized Anonymous expectations and our results

		What are your priorities? (please put a cross)	Quantified expectations or improvements
•	Burr-free:	2	Small burr on back side
•	Other:	Don't break the bridge	No breaking

CONCLUSION

The Mo sample was investigated on SYNOVA LDS300 machine. This machine is based on the MicroJet® technology and combines the advantages the high energy pulsed laser with a hair-thin water jet.

We mounted the sample on the hole in the metal plate with tape to avoid bending.

- Burrs: Very small burrs on the back side.
- Breaking: We couldn't observe any breaking the 10um width bridge

We thank you for your interest in our technology and we hope our results meet your requirements. Our sales will contact you soon to obtain a feedback about the analysis of these results and to discuss with you the further steps.