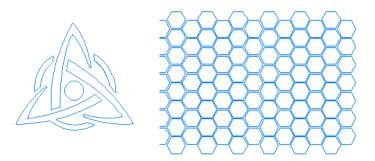


Report No: 123-8
Sample No: <<box>>

CONFIDENTIAL

REPORT: W cutting by Laser-MicroJet®


For Anonymous

By Masaki Takano, Synova Japan

TASK

The Laser-MicroJet® technology has been tested for W cut below patterns.

Pattern1 Pattern2 Pattern3

Release of application report				
	Project Leader		Responsible Application Group	
Name:	Masaki Takano	Name:	D ^r Benjamin Carron	
Date:	2012.03.01	Date:	2012.03.14	
Visum:		Visum:		

Report No: 123-8

Sample No: <<box>>

CONFIDENTIAL

Pattern4 / hole drilling

 $\phi 0.1$ $\phi 0.2$

Pattern5-1, 5-2 / Tape slit

0.1x 40 0.2P

SAMPLE DESCRIPTION AND PREPARATION

SAMPLE 1	Material	W
	Dimension	100x100 <i>mm</i>
	Thickness	100 μm
	Quantity	1 pcs

Report No: 123-8

Sample No: <<box>>

CONFIDENTIAL

PROCESS: INSTRUMENT & TEST PARAMETERS

For these experiments, the LDS300M equipped with a green laser has been used as the machine configuration in our lab.

Major advantages of Laser-MicroJet® technology with regards to your application are:

- Cutting of arbitrary shapes
- No chipping on front side, minimal chipping on backside
- Parallel and smooth cut walls

In the table below, the optimized processing parameters used in the experiments are summarized:

10	SYSTEM	Machine type	LDS300M
OUE SOT			
	MICROJET [®]	Nozzle diameter	40 μm
	PARAMETER	MicroJet® diameter	33.2 µm
		Water pressure	250 <i>bar</i>
		Assist gas	He
	LASER PARAMETER	Laser type	L101G
7		Wavelength	532 <i>nm</i>
		Pulse frequency	8 kHz
-		Average power	10 <i>W</i>
Mar S			
36	CUTTING PARAMETER	Cutting speed	*1) <i>mm/</i> s
		Number of passes	*1)
		Fixture	Vacuum chuck

*1)

	Cutting	Number of
	speed	passes
	(mm/sec)	
Pattern1,2,3,	1	1
Pattern4,φ100um	0.5	20
Pattern4,φ200um	10	20
Pattern5	10	5

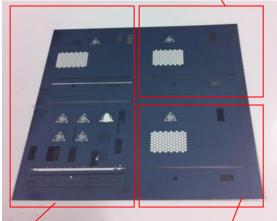
Report No: 123-8

Sample No: <<box>>

CONFIDENTIAL

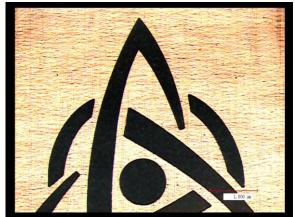
RESULTS

Before cutting


Evaluation 01 Pattern1,2,3,4,5-1,5-2

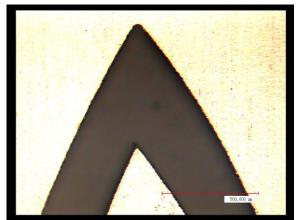
After cutting

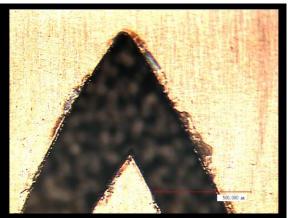
PICTURE: Digital camera image of the sample before processing (bright field illumination; top view)


Test cut area

PICTURE: Digital camera image of the sample after processing (bright field illumination; top view)

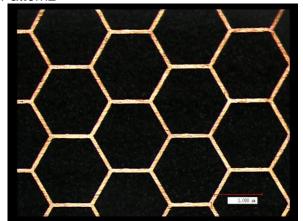
Evaluation 02 Pattern1,2,3,4,5-2,6-2

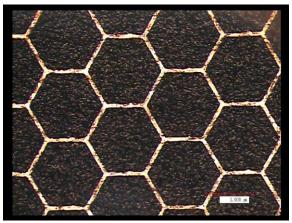

Pattern1


PICTURE: Microscope image of the sample after processing (bright field illumination; top view)

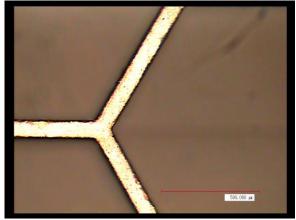
PICTURE: Microscope image of the sample after processing (bright field illumination; back view)

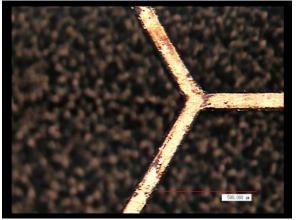
PICTURE: Microscope image of the sample after processing (bright field illumination; top view)


PICTURE: Microscope image of the sample after processing (bright field illumination; back view)


Report No: 123-8 Sample No: <<box>>

CONFIDENTIAL

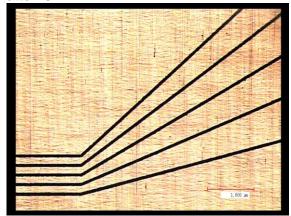

Pattern2


PICTURE: Microscope image of the sample after processing (bright field illumination; top view)

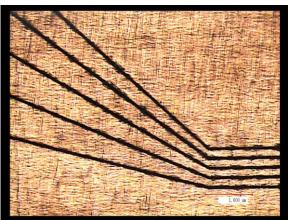
PICTURE: Microscope image of the sample after processing (bright field illumination; back view)

PICTURE: Microscope image of the sample after processing (bright field illumination; top view)

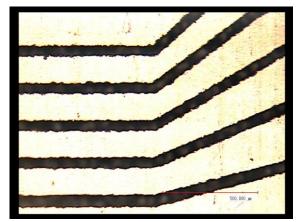
PICTURE: Microscope image of the sample after processing (bright field illumination; back view)

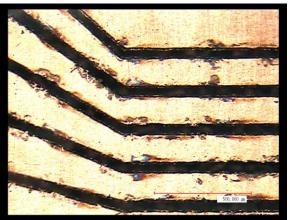


Report No: 123-8


Sample No: <<box>>

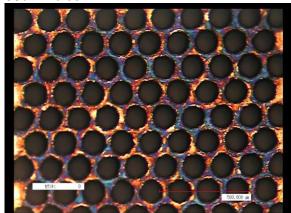
CONFIDENTIAL

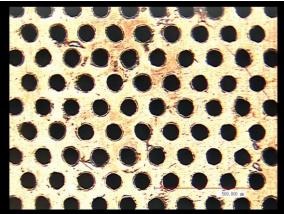

Pattern3


PICTURE: Microscope image of the sample after processing (bright field illumination; top view)

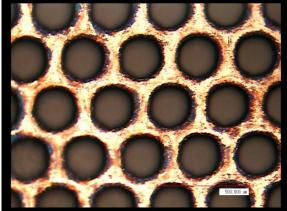
PICTURE: Microscope image of the sample after processing (bright field illumination; back view)

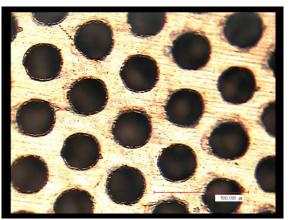
PICTURE: Microscope image of the sample after processing (bright field illumination; top view)


PICTURE: Microscope image of the sample after processing (bright field illumination; back view)

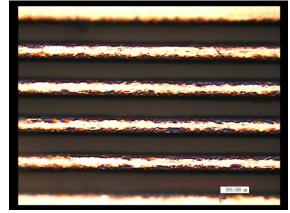

Report No: 123-8 Sample No: <<box>>

CONFIDENTIAL

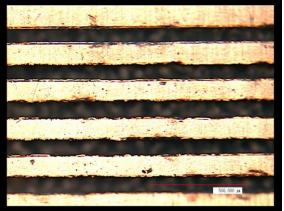

Pattern4 100um holes


PICTURE: Microscope image of the sample after processing (bright field illumination; top view) 200um holes

PICTURE: Microscope image of the sample after processing (bright field illumination; back view)



PICTURE: Microscope image of the sample after processing (bright field illumination; top view)



PICTURE: Microscope image of the sample after processing (bright field illumination; back view)

Pattern5

PICTURE: Microscope image of the sample after processing (bright field illumination; top view)

PICTURE: Microscope image of the sample after processing (bright field illumination; back view)

We cleaned this sample plate with ultrasonic bath for 5min after processing.

Report No: 123-8

Sample No: <<box>>

CONFIDENTIAL

The table below summarized Anonymous expectations and our results

		What are your priorities? (please put a cross)	Quantified expectations or improvements
•	Burr-free:	2	Negligible
•	Chipping/Cracks:	1	Neither chipping nor crack

CONCLUSION

The W sample was investigated on SYNOVA LDS300 machine. This machine is based on the MicroJet® technology and combines the advantages the high energy pulsed laser with a hair-thin water jet.

We cut various geometries and the overall quality is good, sharp edge, no chipping and crack, negligible small burr, nevertheless we observed discoloration on the front side of the small holes (Pattern 4).

We thank you for your interest in our technology and we hope our results meet your requirements. Our sales will contact you soon to obtain a feedback about the analysis of these results and to discuss with you the further steps.