

Report No: 135-6

Sample No:

CONFIDENTIAL

REPORT: Wafer dicing by Laser-MicroJet®

for Anonymous

by Mr Stéphane Delahaye; Synova SA

TASK

The goal of this study is to show the potential of the LMJ technology for cutting silicon and black molding wafers and to give a review of the different options available.

SAMPLE DESCRIPTION AND PREPARATION

SAMPLE	Material	Silicon and black material
	Dimension	Ø 300 <i>mm</i>
	Thickness	330 μm
	Quantity	2 pcs

Release of application report			
	Project Leader		Responsible Application Group
Name:	Mr Stephane Delahaye	Name:	Dr Benjamin Carron
Date:	22.05.2013	Date:	22.05.2013
Visum:	SDE	Visum:	

Report No: 135-6

Sample No:

CONFIDENTIAL

PROCESS: INSTRUMENT & TEST PARAMETERS

For these experiments, the LDS 200M equipped with a short pulse laser has been used as the machine configuration in our lab.

In the table below, the optimized processing parameters used in the experiments are summarized:

	SYSTEM	Machine type	LDS 200M		
Manz					
Say					
	MICROJET [®] PARAMETER	Nozzle diameter	40(L101G and <i>μm</i> EO60G)/30(EO21G)		
		MicroJet® diameter	~32/24 µm		
		Water pressure	150 <i>bar</i>		
		Assist gas	He		

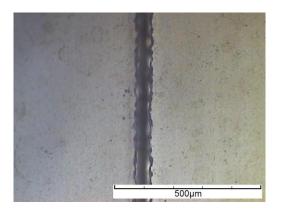
RESULTS

As already mentioned the highest priority was to optimize the process to get the best cutting quality.

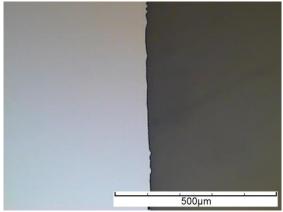
L101G

Strategy	Α	В	С	Е	
Pulse frequency	40	40	40	40	kHz
Average power	~10	~10	~10	~16	W
Average power (Into water jet)	~4.5	5	5	8	W
Cutting speed	100	100	200	100	mm/s
Pulse width	~300	~120	~120	~120	ns
Number of	14	18	36	14	
passes					
Overall speed	~7	~5.6	~5.6	~7	mm/s

The following microscope pictures give an overview on the quality obtained with the Laser-Microjet® technology.



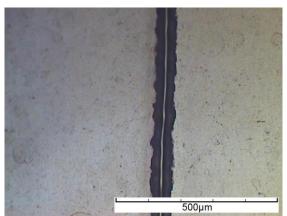
Report No: 135-6


Sample No:

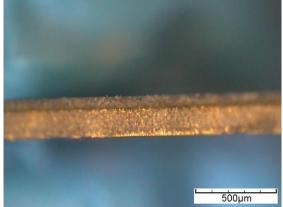
CONFIDENTIAL

Strategy A

PICTURE 1: Microscope image of the cut (top view)



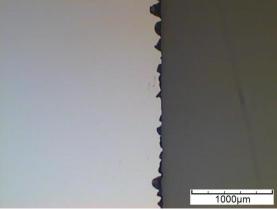
PICTURE 2: Microscope image of the cut (sidewall view)



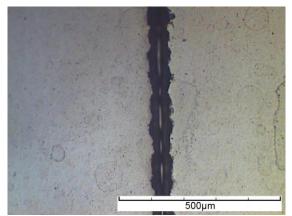
PICTURE 3: Microscope image of the cut (backside view)

Strategy B

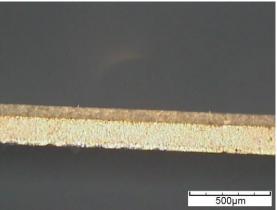
PICTURE 4: Microscope image of the cut (top view)


PICTURE 5: Microscope image of the cut (sidewall view)

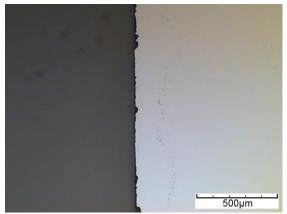
Report No: 135-6


Sample No:

CONFIDENTIAL



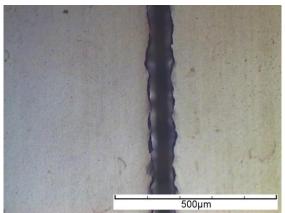
PICTURE 6: Microscope image of the cut (backside view)

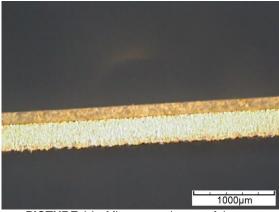

Strategy C

PICTURE 7: Microscope image of the cut (top view)

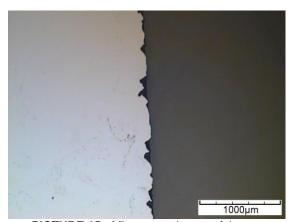
PICTURE 8: Microscope image of the cut (sidewall view)

PICTURE 9: Microscope image of the cut (backside view)


Strategy E


Report No: 135-6

Sample No:


CONFIDENTIAL

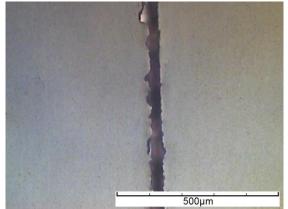
PICTURE 13: Microscope image of the cut (top view)

PICTURE 14: Microscope image of the cut (sidewall view)

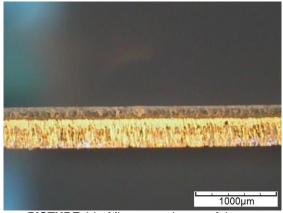
PICTURE 15: Microscope image of the cut (backside view)

E021G/E060G

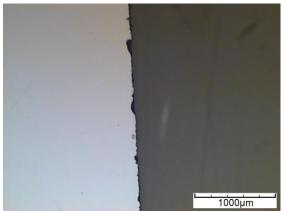
Strategy	G	K	
Laser type	EO21G	EO60G	
	Cutting	Cutting	
Pulse frequency	250	250	kHz
Average power	~14	~15	W
Average power	~9	10	W
(Into water jet)			
Cutting speed	100	100	mm/s
Pulse width	~25	~25	ns
Number of	16	18	
passes			
Overall speed	~6.3	~5.6	mm/s


Report No: 135-6

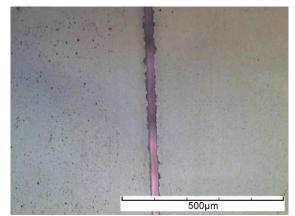
Sample No:


CONFIDENTIAL

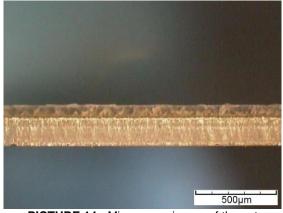
Note: sample G has been processed with higher fluence because the nozzle size was smaller.


Strategy G

PICTURE 13: Microscope image of the cut (top view)



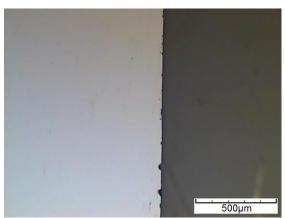
PICTURE 14: Microscope image of the cut (sidewall view)



PICTURE 14: Microscope image of the cut (backside view))

Strategy K

PICTURE 13: Microscope image of the cut (top view)


PICTURE 14: Microscope image of the cut (sidewall view)

Report No: 135-6

Sample No:

CONFIDENTIAL

PICTURE 14: Microscope image of the cut (backside view))

CONCLUSION

Thin silicon wafers (<100µm)

- EO21G and EO60G give the best results. 3 passes are necessary with EO21G and 2 passes with EO60G.
- Low Pressure and low fluence are very important to limit the chipping and delamination of the mold compound.
- 80-100 mm/s seems to be the optimal range cutting speed.

Black molding wafers (~300µm)

- High cutting quality with minimal chipping on backside and smooth cut walls are achieved with high frequency and low fluence.
- 80-100 mm/s seems to be the optimal range cutting speed.
- L101G: does not have any thickness limitation but do not give the best cutting quality. Backside chipping may be reduced with further tests.
- EO21G: Our current version doesn't not allow to cut through because the threshold fluence which is necessary for cutting materials whose the thickness is >100μm is too high.
- EO60G: our current version has more average power (~50 instead of ~18W), longer pulse width (~28 instead of 15-18ns) and lower frequency (250 instead of 300 kHz). It gives the best cutting quality and the characteristics can be adjusted according to your needs.