

APPLICATION REPORT

Report No: 151-9

Sample No: 2.2.1565

CONFIDENTIAL

REPORT: Si3N4 wafer cutting by Laser MicroJet®

for attention of Anonymous

by Stephane Delahaye, Synova SA

TASK

The Laser MicroJet $^{\$}$ technology has been tested for determining the feasibility of cutting rectangles and ovals in 2 mm thick Si3N4 wafer covered with 40-50 μ m of CVD diamond.

SAMPLE DESCRIPTION AND PREPARATION

SAMPLE 1	Material	Si3N4 and CVD diamond	
	Dimension	~18*25	mm
	Thickness	~2.000 + 0.050	mm
	Quantity	1	pcs

Release of application report						
Project Leader			Responsible Application Group			
Name:	Stephane Delahaye	Name:	D ^r Benjamin Carron			
Date:	02.02.2015	Date:	02.02.2015			
Visum:	SDE	Visum:	BC			

APPLICATION REPORT

Report No: 151-9

Sample No: 2.2.1565

CONFIDENTIAL

PROCESS: INSTRUMENT & TEST PARAMETERS

For these experiments, a DCS 150 equipped with a frequency-doubled Q-switched Nd: YAG has been used as the machine configuration in our lab. This machine allows to cut, drill, groove, scribe, trench, mark or grind any kind of material.

The table below summarizes the optimized processing parameters used in the experiments:

	SYSTEM	Machine type	DCS 150	
		Helium flow	0.7	L/min
		Working distance	12	mm
2.3800		Laser fiber	150	μm
8		Collimator	200	mm
	MICROJET®	Nozzle diameter	40	μm
	PARAMETER	MicroJet® diameter	33	μm
		Water pressure	350	bar
		Assist gas	He	
	LASER PARAMETER	Laser type	L101G	
		Wavelength	532	nm
		Pulse frequency	6	kHz
		Average power	Rectangle: 10	W
A DE TO			Oval: 16	
		Pulse width	<180	ns
- 15	CUTTING PARAMETER	Cutting speed	Rectangle: 6 and 7	mm/s
			Oval: 6	
		Number of passes	Rectangle: 80	
			Oval: 90	
		Fixation	Clamps	

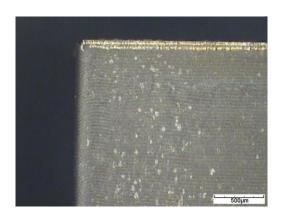
RESULTS

Only few trials were possible due to the small amount of material available. The cutting parameters were optimized to minimize the chipping on the frontside.

The following microscope pictures give an overview on the quality obtained with the Laser-Microjet® technology.

PICTURE 1: Microscope image of the top side of the sample.

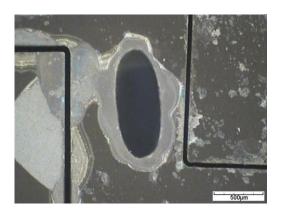
PICTURE 2: Microscope image of the top side of the sample



APPLICATION REPORT

Report No: 151-9

Sample No: 2.2.1565


CONFIDENTIAL

PICTURE 3: Microscope image of the sidewall of the sample.

PICTURE 4: Microscope image of the back side of the sample

PICTURE 5: Microscope image of the top side of the sample.

CONCLUSION

The cutting of Si3N4 wafer with CVD diamond coating on the top was investigated on a SYNOVA DCS 150. This machine is based on the Laser MicroJet® technology and combines the advantages of the high energy pulsed laser with a hair-thin water jet. While the laser is used for material ablation, the water jet is used for guiding the laser light, cooling the edges and preventing the sample from particle contamination, advantages that are essential for cutting Si3N4 wafer with high quality.

This first iteration shows that it is feasible to cut small rectangles and ovals into this material. However some chipping is visible on the frontside and more developments are required to improve frontside quality and "oval" process stability.

We thank you for your interest in our technology and we hope our results meet your requirements. Our sales representative will contact you soon to obtain a feedback about the analysis of these results and to discuss with you the further steps.