

Report No: 153-10 Sample No: 2.2.1600

CONFIDENTIAL

REPORT: Bulk Metallic Glass cutting by Laser-MicroJet®

For Anonymous

By Mr. Stephane Delahaye, Synova SA

TASK

The Laser-MicroJet® technology has been tested for cutting 900µm thick Bulk Metallic Glass Parts. The main target was to determine the feasibility of the process in order to give an overview of the technology.

Picture 1: Drawing used for the test (note that the outer contour has not been processed)

Release of application report							
	Project Leader Responsible Application Group		Responsible Application Group				
Name:	Stephane Delahaye	Name:	Dr Benjamin Carron				
Date:	30.03.2015	Date:	30.03.2015				
Visum:	SDE	Visum:	BC				
		<u> </u>					

Report No: 153-10 Sample No: 2.2.1600

CONFIDENTIAL

SAMPLE DESCRIPTION AND PREPARATION

The samples were fixed with 2 clamps

SAMPLE	Material	AnonymousAlloy LM105
	Thickness	900 μm
	Quantity	1 pcs

PROCESS: INSTRUMENT & TEST PARAMETERS

For these experiments, the LCS300 equipped with a frequency-doubled Q-switched Nd-YAG laser has been used as the machine configuration in our lab.

In the table below, the machine configuration is summarized:

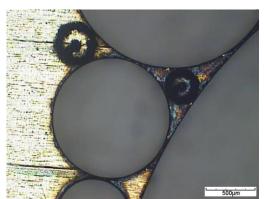
	SYSTEM	Machine type	LCS300	
		Helium flow (MFC)	0.9	L/min
		Working distance	10	mm
T		Laser fiber	150	μm
300		Collimator	250	mm
DES		Transmission	~55	%
	MICROJET [®]	Nozzle diameter	40	μm
	PARAMETER	MicroJet® diameter	~32	μm
		Water pressure	350	bar
		Assist gas	He	
-	LASER PARAMETER	Laser type	L101G	
		Wavelength	532	nm
		Pulse frequency	26	kHz
		Average power (in jet)	12 (~7)	W
		Pulse width	~140	ns
3%	CUTTING PARAMETER	Cutting speed	3	mm/s
		Number of passes	80	
		Process time	~4	h
		Fixation	Clamps	

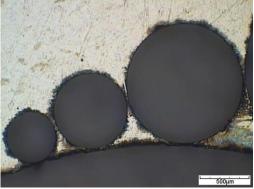
Table 1: Machine configuration summary

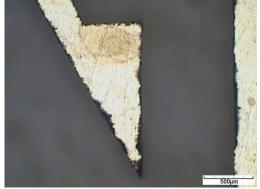
RESULTS

The following microscope pictures give an overview on the quality obtained with the Laser-Microjet® technology.

Report No: 153-10 Sample No: 2.2.1600


CONFIDENTIAL


Picture 2: digital camera image of the samples


Picture 3: Microscope image of the frontside

Picture 4: Microscope image of the frontside

Picture 5: Microscope image of the backside

Picture 6: Microscope image of the backside

CONCLUSION

The cutting of Anonymous was investigated on SYNOVA LCS300. This machine is based on the MicroJet® technology and combines the advantages of the high energy pulsed laser with a hair-thin water jet. While the laser is used for material ablation, the water jet is used for guiding the laser light, cooling the edges and allowing an excellent accuracy, advantages that are essential for cutting Anonymous with high quality.

This first test shows that:

- It is possible to cut such material with a good quality. However some more developments are required to fine tune the results, in terms of quality and time.
- Further tests are necessary to optimize the drilling of the small holes.

Report No: 153-10 Sample No: 2.2.1600

CONFIDENTIAL

Improvement of the overall cutting speed is also feasible by increasing the average power
of the laser but the cutting quality may suffer.

We thank you for your interest in our technology and we hope our results meet your requirements. We will contact you soon to obtain a feedback about the analysis of these results and to discuss with you the further steps.