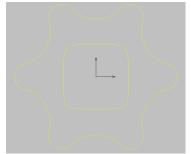


Report No: 153-11 Sample No: 2.2.1599

CONFIDENTIAL


REPORT: Ceramic and Tungsten cutting by Laser-MicroJet®

For Anonymous

By Mr. Stephane Delahaye, Synova SA

TASK

The Laser-MicroJet® technology has been tested for cutting ceramic and Tungsten samples. The main goal was to determine the feasibility of the process in order to give an overview of the technology.

Picture 1: drawing used to process the samples

Release of	application report		
	Project Leader		Responsible Application Group
Name:	Mr. Stephane Delahaye	Name:	Dr Benjamin Carron
Date:	01.04.2015	Date:	01.04.2015
Visum:	SDE	Visum:	ВС
		<u>.</u>	

Report No: 153-11 Sample No: 2.2.1599

CONFIDENTIAL

SAMPLE DESCRIPTION AND PREPARATION

The different samples were fixed with two clamps .

Material	Ceramic
Thickness	~2000 µm
Quantity	3 pcs
Material	Ceramic
Thickness	~4000 µm
Quantity	2 pcs
Material	Hard metal (W)
Thickness	~4000 µm
Quantity	2 pcs
	Thickness Quantity Material Thickness Quantity Material Thickness

PROCESS: INSTRUMENT & TEST PARAMETERS

For these experiments, the LCS300 equipped with a frequency-doubled Q-switched Nd-YAG laser has been used as the machine configuration in our lab.

It is a manually loaded clean-room compatible machine, allowing to cut, drill, groove, scribe, trench, mark, or grind different kinds of materials.

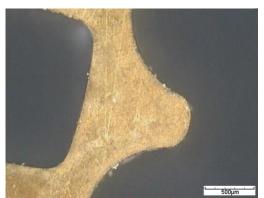
In the table below, the machine configuration is summarized:

	SYSTEM	Machine type	DCS 300	
		Helium flow (MFC)	0.9 L/n	nin
		Working distance	10 mn	7
-		Laser fiber	150 μm	
9		Collimator	200 mn	7
Docs		Transmission	~60 %	
	MICROJET [®]	Nozzle diameter	60 μm)
	PARAMETER	MicroJet® diameter	48 μm)
		Water pressure	350 bai	r
		Assist gas	He	
-	LASER PARAMETER	Laser type	L101G	
		Wavelength	532 <i>nm</i>)
		Pulse frequency	14 (sample 1) kH	Z
			8 (sample 2&3)	
A P. W.		Average power	25 (sample 1&2) W	
			33 (sample 3)	
		Pulse width	<200 ns	
**	CUTTING PARAMETER	Cutting speed	5 (sample 1&2) mn	n/s
No.			3 (sample 3)	
		Number of passes	30 (sample1)	
		,	50 (sample 2&3)	

Report No: 153-11 Sample No: 2.2.1599

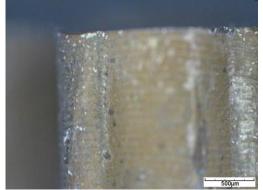
CONFIDENTIAL

~3 (sample2)
- /
~5 (sample3)
Clamps


RESULTS

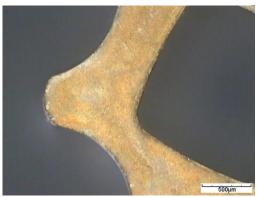
The following microscope pictures give an overview on the quality obtained with the Laser-Microjet® technology.

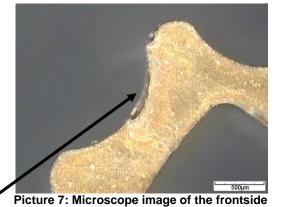
Picture 2: digital camera image of the 2 types of sample


Sample 1

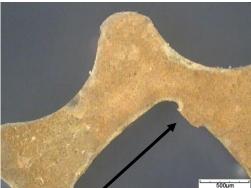
Picture 3: Microscope image of the frontside

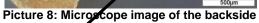
Picture 4: Microscope image of the backside

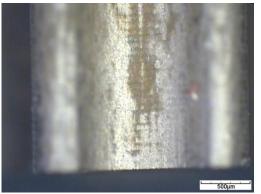

Picture 5: Microscope image of the sidewall


Sample 2

Report No: 153-11 Sample No: 2.2.1599

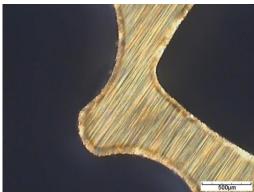

CONFIDENTIAL

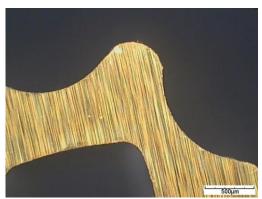




Picture 6: Microscope image of the frontside

Sample is moving at the end of the process which leads to laser marks on the surface

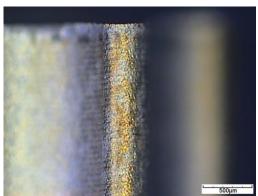



Picture 9: Microscope image of the sidewall

A small bridge is visible on backside. This can be avoided with a suitable holding system.

Sample 3

Picture 10: Microscope image of the frontside (some HAZ is visible)



Picture 11: Microscope image of the backside

Report No: 153-11 Sample No: 2.2.1599

CONFIDENTIAL

Picture 12: Microscope image of the sidewall

CONCLUSION

The cutting of ceramic and Tungsten was investigated on SYNOVA LCS300. This machine is based on the MicroJet[®] technology and combines the advantages of the high energy pulsed laser with a hair-thin water jet. While the laser is used for material ablation, the water jet is used for guiding the laser light, cooling the edges and allowing an excellent accuracy, advantages that are essential for cutting ceramic and Tungsten with high quality.

Preliminary tests show that it is possible to cut such materials with an excellent quality. However some more developments are required to fine tune the results, in terms of quality to avoid laser marks and bridges (this will require to develop a suitable fixing system) and time of process.

We thank you for your interest in our technology and we hope our results meet your requirements. We will contact you soon to obtain a feedback about the analysis of these results and to discuss with you the further steps.