

APPLICATION REPORT

Report No: 153-12 Sample No: 2.2.1604

CONFIDENTIAL

REPORT: Composite materials cutting by Laser-MicroJet®

For Anonymous

By Mr. Stephane Delahaye, Synova SA

TASK

The Laser-MicroJet® technology has been tested for cutting of composite materials. The main goal was to determine the feasibility of the process in order to give an overview of the technology.

SAMPLE DESCRIPTION AND PREPARATION

1 tube was available for the tests and was fixed with a clamp.

SAMPLE 1	Material	PBO/EPOXY+	
		Carbone(T800)/Epoxy	
	Thickness	~1000 <i>µm</i>	
	Quantity	1 pcs	

Release of application report						
Project Leader			Responsible Application Group			
Name:	Stephane Delahaye	Name:	Dr Benjamin Carron			
Date:	31.03.2015	Date:	31.03.2015			
Visum:	SDE	Visum:	BC			

APPLICATION REPORT

Report No: 153-12 Sample No: 2.2.1604

CONFIDENTIAL

PROCESS: INSTRUMENT & TEST PARAMETERS

For these experiments, the LCS300 equipped with a frequency-doubled Q-switched Nd-YAG laser has been used as the machine configuration in our lab.

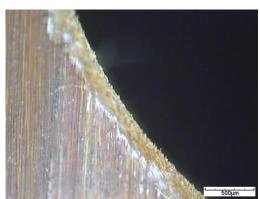
It is a manually-loaded machine allowing to cut, drill, groove, scribe, trench, mark, or grind a wide range of materials.

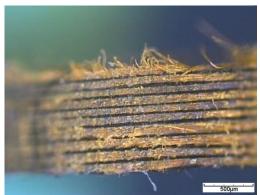
In the table below, the machine configuration is summarized:

	SYSTEM	Machine type	LCS300	
		Helium flow (MFC)	0.9 <i>L/min</i>	
		Working distance	10 <i>mm</i>	
		Laser fiber	150 <i>μm</i>	
000		Collimator	200 <i>mm</i>	
DCS 30		Transmission	~58 %	
	MICROJET [®]	Nozzle diameter	80 μm	
	PARAMETER	MicroJet® diameter	~64 <i>µm</i>	
		Water pressure	350 <i>bar</i>	
		Assist gas	He	
	LASER PARAMETER	Laser type	L101G	
		Wavelength	532 <i>nm</i>	
		Pulse frequency	18 <i>kHz</i>	
		Power (in jet)	24 (14) W	
		Pulse width	~180 <i>ns</i>	
	CUTTING PARAMETER	Cutting speed	20 <i>mm/</i> s	
		Number of passes	10	
		Process time	~20 s/hole	
		Fixation	Clamp	

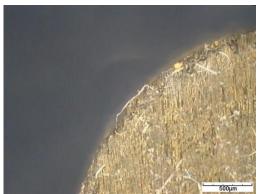
RESULTS

The following microscope pictures give an overview on the quality obtained with the Laser-Microjet® technology.


Picture 1: digital camera image of the sample


APPLICATION REPORT

Report No: 153-12 Sample No: 2.2.1604


CONFIDENTIAL

Picture 2: Microscope image of the frontside

Picture 3: Microscope image of the sidewall

Picture 4: Microscope image of the backside

CONCLUSION

The cutting of composite materials was investigated on SYNOVA LCS300. This machine is based on the MicroJet[®] technology and combines the advantages of the high energy pulsed laser with a hair-thin water jet. While the laser is used for material ablation, the water jet is used for guiding the laser light, cooling the edges and allowing an excellent accuracy, advantages that are essential for cutting composites with high quality.

These tests show:

- The feasibility of the process
- The cutting quality is good with limited delamination on the frontside

These first results appear promising and depending on your requirements, we could try in a further step to minimize the delamination and the heat damage, or to increase the cutting speed.

We thank you for your interest in our technology and we hope our results meet your requirements. We will contact you soon to obtain a feedback about the analysis of these results and to discuss with you the further steps.