

Report No: 157-1 Sample No: 2.2.1652

CONFIDENTIAL

REPORT: Ceramic cutting by Laser-MicroJet®

For Anonymous

By Mr. Stephane Delahaye, Synova SA

1. TASK

The Laser-MicroJet® technology has been tested for cutting lines and drilling small holes in ceramic materials. The main goal was to show the process capabilities and to give a first overview of the technology.

2. TASK DESCRIPTION

SAMPLE	Material	Ceramic (Al2O3)
	Thickness	635 μm
	Quantity	10 pcs

Release of application report						
Project Leader			Director of Applications Engineering			
Name:	Mr. Stephane Delahaye	Name:	Dr. Benjamin Carron			
Date:	06.07.2015	Date:	06.07.2015			
Visum:	SDE	Visum:				

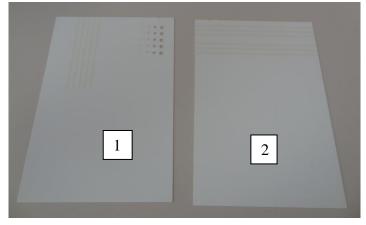
Report No: 157-1 Sample No: 2.2.1652

CONFIDENTIAL

3. PROCESS: INSTRUMENT & TEST PARAMETERS

For these experiments, the LCS300 equipped with a frequency-doubled Q-switched Nd-YAG laser has been used as the machine configuration in our lab. It is a manually loaded machine, allowing cutting and drilling any kind of materials.

Major advantages of the Laser MicroJet® technology with regards to your application are:


- Cutting of arbitrary shapes
- Low heat damage to the material

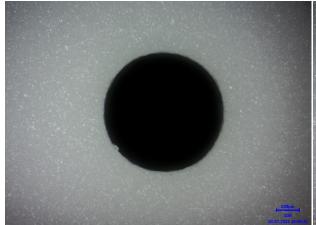
In the table below, the optimised processing parameters used in the experiments are summarised:

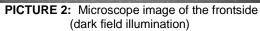
9 000 857	SYSTEM	Machine type	LCS300
1	MICROJET PARAMETERS	Nozzle diameter	40 μm
		MicroJet diameter	~32 <i>mm/</i> s
		Water pressure	350 <i>bar</i>
		Assist gas	He (0.9 <i>L/min</i>)

4. RESULTS

Two types of geometry (hole/line) were used to show the process capabilities. The following pictures give an overview on the quality obtained with the Laser-MicroJet technology.

PICTURE 1: Macroscopic view of the 2 samples


Report No: 157-1


Sample No: 2.2.1652

CONFIDENTIAL

• Holes

GEOMETRY		Hole	Hole	Hole	Hole	Hole	Hole	
DIAMETER		~3.5	~2.5	~1	~0.5	~0.3	~0.2	mm
LASER	Frequency	10	10	6	6	6	6	kHz
PARAMETERS	Pulse width	~140	~140	~140	~140	~140	~140	ns
	Power	13	13	18	18	18	18	W
	Power in jet	~6	~6	~6	~8	~8	~8	W
CUTTING	Working distance	12	12	12	12	12	12	mm
PARAMETERS	Motion speed	10	10	10	10	8	8	mm/s
	Pass numbers	110	110	60	100	400	1200	
	Process time	~120	~100	~60	~25	~40	~100	S

PICTURE 3: Microscope image of the backside (dark field illumination)

Lines

GEOMETRY		Scribing	Scribing	Scribing	Scribing	Scribing	
		1 st sample	1 st sample	1 st sample	2 nd sample	2 nd sample	mm
LASER	Frequency	6	6	6	6	6	kHz
PARAMETERS	Pulse width	~140	~140	~140	~140	~140	ns
	Power	19	19	19	19	19	W
	Power in jet	~8	~8	~8	~8	~8	W
CUTTING	Working distance	12	12	12	12	12	mm
PARAMETERS	Motion speed	20	20	20	20	20	mm/s
	Pass numbers	20	30	40	40	60	
	Process time	~90s	~132s	~180s	~5min	~7min40	

Report No: 157-1 Sample No: 2.2.1652

CONFIDENTIAL

PICTURE 3: Microscope image of the frontside (dark field illumination)

5. CONCLUSION

The cutting of Alumina material has been performed with a SYNOVA LCS 300. This machine is based on the MicroJet[®] technology and combines the advantages of the high energy pulsed laser with a hair-thin water jet. While the laser is used for material ablation, the water jet is used for guiding the laser light, cooling the edges and preventing the sample from particle contamination, advantages that are essential for cutting alumina with a high quality.

These tests show that:

- The quality of the cut is very good with limited heat affected zone
- Cutting speed can be improved by using more average power but the quality may suffer

We thank you for your interest in our technology and we hope our results meet your requirements. Our sales agent will contact you soon to obtain a feedback about the analysis of these results and to discuss with you the further steps.