

# APPLICATION REPORT

Report No: 157-2 Sample No: 2.2.1653

**CONFIDENTIAL** 

# REPORT: Aluminium cutting by Laser-MicroJet®

For Anonymous

By Mr. Stephane Delahaye, Synova SA

#### 1. TASK

The Laser-MicroJet  $^{\otimes}$  technology has been tested for drilling small holes (~200 µm) in an aluminium sample. The goal was to give a first overview of the technology.

### 2. TASK DESCRIPTION

| SAMPLE | Material  | Aluminium |
|--------|-----------|-----------|
|        | Thickness | 500 μm    |
|        | Quantity  | 3 pcs     |

| Release of application report |                       |        |                                      |  |  |  |
|-------------------------------|-----------------------|--------|--------------------------------------|--|--|--|
| Project Leader                |                       |        | Director of Applications Engineering |  |  |  |
| Name:                         | Mr. Stephane Delahaye | Name:  | Dr. Benjamin Carron                  |  |  |  |
| Date:                         | 06.07.2015            | Date:  | 06.07.2015                           |  |  |  |
| Visum:                        | SDE                   | Visum: |                                      |  |  |  |
|                               |                       |        |                                      |  |  |  |



# APPLICATION REPORT

Report No: 157-2 Sample No: 2.2.1653

CONFIDENTIAL

#### 3. PROCESS: INSTRUMENT & TEST PARAMETERS

For these experiments, the LCS300 equipped with a frequency-doubled Q-switched Nd-YAG laser has been used as the machine configuration in our lab. It is a manually loaded machine, allowing cutting and drilling any kind of materials.

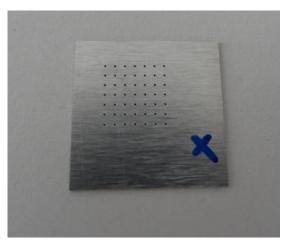
Major advantages of the Laser MicroJet® technology with regards to your application are:

- Advantageous process rates
- Cutting of arbitrary shapes
- Low heat damage to the material

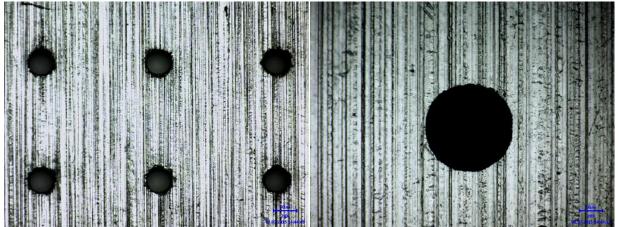
In the table below, the optimised processing parameters used in the experiments are summarised:

| 08 CU: | SYSTEM           | Machine type      | LCS300                 |
|--------|------------------|-------------------|------------------------|
|        | MICROJET         | Nozzle diameter   | 30 μm                  |
|        | PARAMETERS       | MicroJet diameter | ~24 µm                 |
|        |                  | Water pressure    | 450 <i>bar</i>         |
|        |                  | Assist gas        | He (0.9 <i>L/min</i> ) |
|        | LASER PARAMETERS | Laser type        | L101G                  |
|        |                  | Wavelength        | 532 nm                 |
|        |                  | Frequency         | 6 kHz                  |
|        |                  | Pulse width       | ~140 <i>n</i> s        |
|        |                  | Power             | 10 W                   |
|        |                  | Power in jet      | ~4.5 W                 |
|        | CUTTING          | Motion speed      | 4 <i>mm/</i> s         |
|        | PARAMETERS       | Pass numbers      | 70                     |
|        |                  | Overall speed     | 3.4 mm/min             |
|        |                  | Time of process   | ~7min                  |

#### 4. RESULTS


The following pictures give an overview on the quality obtained with the Laser MicroJet technology.




### APPLICATION REPORT

Report No: 157-2 Sample No: 2.2.1653

CONFIDENTIAL



PICTURE 1: Macroscopic view of the sample (frontside)



PICTURE 2: Microscope image of the frontside (dark field illumination)

PICTURE 3: Microscope image of the backside (dark field illumination)

### 5. CONCLUSION

The cutting of aluminium material has been performed with a SYNOVA LCS 300. This machine is based on the MicroJet® technology and combines the advantages of the high energy pulsed laser with a hair-thin water jet. While the laser is used for material ablation, the water jet is used for guiding the laser light, cooling the edges and preventing the sample from particle contamination, advantages that are essential for cutting with a high quality.

These tests show that:

- The quality of the cut is very good with limited heat affected zone
- Drilling holes of ~200 µm is feasible

We thank you for your interest in our technology and we hope our results meet your requirements. Our sales agent will contact you soon to obtain a feedback about the analysis of these results and to discuss with you the further steps.